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Solution of the General Helmholtz Equation in The finite-element method has been used in [3], [10], [11],
Homogeneously Filled Waveguides Using [13]-[15]. In this method, the cutoff wavenumbers of hollow
a Static Green’s Function waveguides are usually obtained by using variational expressions
which relate the propagation constants and the operating frequencies
Mahesh Balagangadhar, Tapan K. Sarkar, of the waveguides with the values of the electric and magnetic
Jalel Rejeb, and Rafael R. Boix fields inside these waveguides. One constraint of the finite-element

method is that most field components that are to be approximated

have to be continuous in the cross sections of the waveguides

Abstract—The new boundary-integral method used in this paper since the variational expressions used in the computation of the
illustrates a novel approach to solve the general Helmholtz equation cutoff wavenumbers involve derivatives of the mentioned fields

in homogeneously filled waveguides. Based on the method-of-momentsgononents. Another constraint is that when the cross section of the
Laplacian solution, the main feature of this formulation is that the

Helmholtz equation is “reduced” to the Poisson’s equation, which is then Waveguide to be analyzed presents reentrant corners (this happens
solved by using a static Green’s function. In other words, the Green's With single- and double-ridged waveguides, L-shaped waveguides,
function used in this method is frequency independent, unlike the most crossed rectangular waveguides, etc.), the basis functions for the field
conventionally used Hankel functions. Hence, the computational time, components should take into account the singular behavior of these

while analyzing the waveguide over a range of different frequencies, is ts at th duct Thi b " f d
reduced considerably compared to other well-known numerical methods, components at the conductor corners. IS can be partly performe

since the frequency term just appears as a scaling factor in the evaluation With simple basis functions (polynomials) by using a denser mesh of
of matrix elements. The numerical results obtained using the present elements around the corners [10] or by using special basis functions
method compare well with actual results (in the case of rectangular g ch as functions possessing the exact singular behavior of the fields
‘r’;';geegvaisgu?dngs)?”bI'ShEd results (in the case of L-shaped and Slngle‘[11] or functions that permit the normal field to be discontinuous
between adjoining elements [13]. However, although these latter basis
functions have proved to be adequate to account for field singularities,
they lead to matrices in the generalized eigenvalue problem whose
|. INTRODUCTION coefficients have to be computed by means of numerical integration,
thus increasing the CPU time requirements [11], [13]. It should also

The two-dimensional (2-D) Helmholtz equation appears in avariefy, ¢.iq that when the effect of field singularities in reentrant corners

of phy5|_cal phenor_nena _and engineering applications, S‘.UCh as hlg%nored when applying the finite-element method, very inaccurate
conduction, acoustic radiation, and water wave propagation. In elec-

. . results may be obtained (see [11, Sec. VI] and see the results for
tromagnetics, the Helmholtz equation often appears as the governing ... transverse (MT) equation in [15, Th. IV])

equation for waveguide problems. Diverse numerical methods like n the new method [1] discussed in this’ paber t;NO integral equa-
the Ritz—Galerkin method, the surface integral-equation method, atnc! !

the finite-element method have been employed to solve this equatié(r)]nS for the axial components of the fields (electric and magnetic)

i he RitzGelrkin metho, i s been used 4, (610 2 Y12 vaegUi s ovlned by seatng e Hemnole
an integral equation for the transverse electric field at the inn fu P qu

apertures of the waveguides is established. The surface integPé’I- using a frequency-independent Green's function. The integral

equation approach, which has been used in [5], [12], and ugquations are solved based on the method-of-moments Laplacian

starts from surface integral equations for the current—density in t 8Iut|0n, and it is proven in this paper that thanks to the use of a

waveguide walls for both TM and TE modes. The application of thafatic Green’s function, the computation of the cutoff wavenumbers

method of moments to the solution of these integral equations in béﬂ’i th_e modes propagatlng in the wayegwde reduces to obtgmmg
methods leads to obtaining homogeneous systems of linear equatit@, €igenvalues of a matrix. The coefficients of the aforementioned
The matrix coefficients of these systems of equations are given B{@{Tix can be obtained in closed form when pulse basis functions
infinite summation in the case of Ritz—Galerkin method and H§'d Point maiching are used to solve the integral equation.
integrals containing Hankel's functions, which must be numerically " comparison with the Ritz-Galerkin method and the surface
computed in case of surface integral-equation method. In both cadBegral-equation method, the cutoff wavenumbers of the first modes
the cutoff wavenumbers of the waveguides are obtained by solvififf &ll obtained in one shot using this method by solving a relatively
iteratively nonlinear equations which arise when the determinant $fPle eigenvalue problem, whereas in any of the other two methods,
the matrices of the systems of linear equations is set to zero (nontrif2 €valuation of each cutoff wavenumber requires one to iteratively
solution condition). This consumes large central processing ufRRktain the roots of a nonlinear function which has to be obtained
(CPU) time. as the determinant of a matrix whose coefficients are not available
in closed form. It is clear that the latter procedure takes much
longer than the former. Moreover, the Green’'s function used in
Manuscript received November 18, 1996; revised September 29, 1997. This method has only spatial dependence and is entirely frequency
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the new method (axial components of the fields) are solutions ofOn the contourC, the boundary condition can be of Dirichlet,
integral equations, the continuity of these functions in the crod&umann, or mixed type, as given by the general form
section of the waveguides and the ability to handle field singularities ;

- . LOw
at reentrant corners are not necessary conditions to be imposed on a¥ + ’36—11 =7 4)
the basis functions employed in the approximation of the unknown _ _
functions. This is so because the integral of functions containiighere «, 3, and~ are known spatial functions. Furthed¥/on
discontinuities and singularities (of the type shown by the fields wprgsents the normal derivative. .
reentrant conductor corners) does not pose any problems. Thereford, is shown by Rejetet al. [1], that the Helmholtz equation could
the basis functions employed in the new method can be choserPgreduced to Poisson’s equation
be simpler (e.g., pulge func_tlons) than those emp_loyed in the fln_lte- V2U(, y) = —G(a, y) )
element method. An immediate consequence of this is that for a given
accuracy, the size of the matrices involved in the application of th@th
new method should be smaller than the size of the matrices involved
in the application of the finite-element method. As a counterpart, the Gz, y) = Nz, y)¥(x, y) — F(x, y). (6)
matrices related to the application of the finite-element method afg L

S e solution is then expressed as

sparse and those related to the application of the new method are

not. The reliability of the new method in comparison with the finite- U = ¢ + o, )
element method, and also the finite-difference time-domain method,
has been discussed in [1] and [20]. where ¢, is the solution to the homogeneous Poisson’s equation

The accuracy of the results obtained by this method is compar@dplace’s equation)
to actual results (for rectangular waveguides) and published results V26, =0 ®)
(for L-shaped and single-ridge waveguides), in this paper. '

and ¢, is the particular integral
Il. SOLUTION OF THE GENERAL HELMHOLTZ V24 — — G, y) ©)
EQuATION IN HOMOGENEOUSLY FILLED WAVEGUIDES rp Oy

In waveguides, solution of the Helmholtz equation determines theThe potentials, can be assumed to be produced by some equiv-

electromagnetic field configuration within the guides. It is convenieatent charges located on the contow?, and can be obtained using
to divide the possible field configurations within the waveguidete following integral, as explained in [2]:

into two sets, namely TM waves and TE waves, each of which are )
governed by similar Helmholtz equations. on(x, y) = i/ oz, y')-1In k i’
If we consider a waveguide in which the direction of propagation 27 Je Vie—a)2 + (y—y')?
of the wave is along the-direction, then the Helmholtz equations (10)
are as follows.
TM. Case(H. = 0): where!’ is the arc length on the contour
) ) Y The particular solution of the Poisson’s equation is given by
VB (z,y)+ (wpe— KJ)E.(z,y) =0 (1)
dp(z, y)
with appropriate boundary conditions o
LR ; g
E.=0, on the conductor walls 27 ) Je (@, y) - In N e VR B, Ay
TE. Case(E. = 0): (11)
VPH. (¢, y)+ (Wipe — K2)H. (2, y) =0 2 In (10) and (11)(x, y) and(«’, y') denote the spatial coordinates
) ) N of the field and source points, respectively, dads an arbitrary
with appropriate boundary conditions constant which provides the potential at the reference point, and is
9H. /o = 0, on the conductor walls taken to be 100 in our calculations.

Using the method of moments, involving pulse—expansion basis
wheredH./dn represents the normal derivative. functions and point-matching techniques at the midpoints ofXhe
Here, discretized subregions d®, and M subcontours of’, the solution
E. z-component of the electric field; can be obtained from a system of matrix equations [1], given by

H. z-component of the magnetic field; g

w angular frequency= 27 f; [A]- 1% = [B] (12)
where where

f frequency of interest; AT — (T 1= 1 T AT

© permeability of the homogeneous medium; 4] = ([p“W”L [b::] [q“])[/\z]j_ L1 (13)

e  permittivity of the homogeneous medium; [B] = [pslllsi] ™ [l + (sl [biil = laiD[F] - (14)

R prgpagatlon constant in thed|rect|on.. ~and[I] denotes theV x N identity matrix. Here¥;, F;, and)\; refer
A solution to the general Helmholtz equation for a smooth functiog the values of, F' and ), respectively, at the midpoints of the
¥ defined in a 2-D regiorRk, with contourC is discretized subregions. The computation of matriges, []. [;i],
V2 (i, y) 4+ AMa, 1) ¥ (2, y) = Fa, y) ®) and [b;] havz_e been discussed_ in [1]. An important inf_erence in
the computation of these matrices is that they do not involve the
where A and F' are known functions on the domaiR, discussed frequency term and, hence, the matrix elements remain unchanged
in [1]. even while solving the Helmholtz equation over different frequencies.



304 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 3, MARCH 1998

TABLE |
General Equation (3) TM, Equation (1) TE, Equation (2)
VU + A =F V2E, + (WPpe—K2)-E, =0 V’H, + (w?pe— K2) - H, =0
i E, H,
A wipe — K2 wipe — K?
F 0 : 0
oV + B-0¥/0n = v E. =0 OH,[0n = 0
04 0 0
Comparing (1) and (2) with (3), and also the boundary conditions
of theTM. andTE. cases with that of the general equation, we can
draw the following analogies from Table I.
Examining (14)
[B] = [p;lll:] ™ i) + (wial[lii] ™" 03] = [a5iD)[F]- 3 em
It can be inferred thatB] = 0, sinceF' = 0 and~ = 0 for TM.
and TE. cases.
In the case ofTM., (12) reduces to the form
[A] - [E] = 0. (15)
In the case ofTE., (12) reduces to the form 4 cm
[4] - [H.:] = 0. (16) Fig. 1. Rectangular waveguide.

Here again,E.; and H.; refer to the values off. and H. at
the midpoints of the subregions of the discretized waveguide croAs Calculation of Propagation Constants of Different Modes

section. o ) _ It is evident that for the existence of nontrivial (nonzero) solutions
For (15) and (16), nontrivial solutions exist fE.;] and [H-:]  for [E.,] and[H..], it is necessary that (17) be satisfied.
only if the matrix[A] is singular. The condition for nontrivial (i.e., et us define a matri{Z]
nonzero) solutions to exist fq&.;] and[H.;] is ) .
(2] = ([pjilllyi] " [bj] = [asiD)- (19)
det[A] =0 17)
Hence, (17) becomes
wheredet [A] stands fordeterminant of A]. We know from (13) that let ([Z][\] 4+ [1]) = 0 20)
d i =
[A] = (pjilltyi] ™ [bii] = lgsaD[N] + ] which can be rewritten as
and we also know that foI'M. and TE. cases -1
det | [Z] — ~ 11} =0.

N =wipe— K2, (18)

(1)

Equation (21) is similar to theharacteristic equatiorof matrix

Hence, given the frequency at which the Helmholtz equation is fg], with its eigenvalues given by-1/);. Knowing that); above
be solved,det [A] would be a function ofi’., the roots of which _ ' 2, . _ g2 for TM. and TE. cases, it can be concluded that

give the values ofy. for which det [A] = 0. Once thesd(. values

are known, the eigenvector ¢fi] corresponding to the minimum _\—1 = 112% = EVimv i=1,2,-++,N. (22)
eigenvalue gives the nontrivial solutions fd.;] and[H.;] in case A (B2)7 —wipe
of TM. andTE. cases, respectively. where k! is the propagation constant of tih mode andEV”! =

Once [E-;] and [H-;] are determined at the grid points, usingth eigenvalue ofZ].
Gaussian elimination for instance, the valueskbf and H. at any Equation (22) can be rearranged as
other point can be obtained using ordinary matrix multiplications, as

. . N ‘ 1
explained in [1]. (K')? = w?pe+ — (23)
As mentioned earlier, the main feature of this formulation is the use EV;
of a frequency-independent Green’s function, which in this case is Therefore, the propagation constants of different modes in the
{ k waveguide are given by the following:
?W'ln<\/<:v—w')2+(y—y')2>' For (K1) > 0,

Thus, while analyzing the waveguide over different frequencies, K= propagating modes (24)
computation of matrix elements using this method is relatively less

complicated and involves lesser computational time compared to For(K)? < 0,
other methods which make use of frequency-dependent Green’'s

functions, e.g., Hankel functions. The frequency term just appears K!
as a scaling factor in all the matrix computations involved in this

method. (25)

nonpropagating modes
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TABLE I
CuTtoFF WAVENUMBERS FORAIR-FILLED RECTANGULAR WAVEGUIDE

Mode No. | Mode |k, actual(radfcm) | k. computed(rad/cm) | Diff. %
10 TE, 0.7857 0.7921 0.81
01 TE, 1.0476 1.0536 0.57
11 TE,, TM, 1.3095 1.3239 1.00
20 TE, 1.5714 1.5827 0.72
21 TE,, TM, 1.8886 1.9108 1.10
02 TE, 2.0952 2.1095 0.68
12 ™™, , TM, 2.2311 2.2610 1.00
30 TE, 2.3571 2.3896 1.30
150 T T - T T Y
Actual Values
b
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Fig. 2. Propagation characteristics in rectangular waveguide 8 cm.

x 10

Results of propagation constants of various modes in a rectangulfie cutoff wave numbek: of the ith mode can be calculated from
waveguide computed by this method are shown in Section lll, atige cutoff frequency using the relation

compare well with actual results.

B. Calculation of Cutoff Frequencies for Different Modes

ki = —ZTrfé,
v

This method thereby provides a straightforward approach to find

i=1,2,---,N.

The cutoff frequencies for the various propagating modes in thge cutoff frequencies (and, hence, cutoff wavenumbers) of any

waveguide are given by
fi= 5o V/(@Pue = (KD)?)
2w

where f = cutoff frequency of theth mode.

(26)

Here,v = velocity of light in the homogeneous medium1/, /jie.

It can be deduced from (23) that

2 N2 -1 .
wipe— (K1)” = IeEk i=1,2,---,N.

7

waveguide structure without resorting to scanning over a wide range
of frequencies, as is done in the Ritz—Galerkin and surface integral-
equation methods. Results for the cutoff wavenumbers of rectangular,
L-shaped, and single-ridge waveguides are given in Section Ill.

. REsSuLTS

A. Rectangular Waveguide

A simple case of a waveguide is the rectangular waveguide. For
the waveguide in Fig. 1, the region was divided into 100 subregions
and the boundary was discretized into 96 subcontours. The maximum
matrix size involved in computations was 160100. Results have

Using the above relation in (26), we find the cutoff frequencies fdreen displayed in Table Il for the cutoff wave numbers of the first

the first N propagating modes

i=1,2--,N.

27)

eightTM./TE. modes. The computational time involved in finding
the cutoff wavenumbers of the first 100 modes on a Sun SPARC 10
workstation was 16 s.

Fig. 2 gives the values of propagation constants of the first four
propagating modes in the rectangular waveguide shown in Fig. 1.
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TABLE I
CuTtoFF WAVENUMBERS FORAIR-FILLED L-SHAPED WAVEGUIDE

Mode No. | Mode | k. published(rad/cm) [ k. computed(rad/cm) | Diff. %
1. TM, 4.8190"9 4.8657 0.97
2. TM. 6.1361"" 6.2213 1.38
3. TM, 6.9908!7 7.1151 177
4. TM, 8.552517 8.7422 2.21
5. TE, 1.8800* 1.9010 1.10
6. TE, 2.915917 2.9631 1.37
7. TE, 4.875517 4.9720 L.97
8. TE, 5.246317 5.3698 2.35
TABLE IV

CuTtoFF WAVENUMBERS FORAIR-FILLED SINGLE-RIDGE WAVEGUIDE

Mode No. | Mode | k. published(rad/cm) | k. computed(rad/cm) | Diff. %
1. TM, 12.1640° 12.2338 0.57
2. ™, 12.2938'7 12.4106 0.95
3. TM, 13.9964'7 14.2152 1.56 -
4. M, 15.587117 15.8221 1.50
5. TE, 2.2566° 2.2688 0.54
6. TE, 4.9436"7 5.0149 1.44
1. TE, 6.518917 6.6289 1.68
8. TE, 7.564217 7.7097 1.92
0.635 cm 1.0 cm
B
0.5cm
0.5 cm
1.27 cm 0.25¢
0.635 em  Fjg 4. Single-ridge waveguide.
were computed for the single-ridge hollow waveguide shown in
Fig. 4. Results have been displayed in Table IV and compared with
1.27 em

published data. For the waveguide, the region was divided into 96
Fig. 3. L-shaped waveguide. subregions and the_bogndgry was o_liscretized iljto 112 subcontours.
The maximum matrix size involved in computations was 966.
The computational time involved in finding the cutoff wavenumbers
B. L-Shaped Waveguide of the first 96 modes in each case on a Sun SPARC 10 workstation
The first four TM. and TE. mode cutoff wavenumbers wereWwas 18 s.
computed for the L-shaped hollow waveguide shown in Fig. 3. Since
analytical results are not available for this waveguide, the obtained
results .in Table 1ii Were.compare.d.with. published datf'i' For the The method discussed in this paper presents a very efficient
waveguide abov_e, the_ region was divided into 108 subreglons and fgghnique based on the method-of-moments Laplacian solution to
b_oun_dary Was_dlscretlzed !nto 96 subcontours. The maximum matg())(lve the general Helmholtz equation in homogeneously filled waveg-
size mvolved n cpmputatlons was 108 108. The computa@onal ides. In addition to “reducing” the Helmholtz equation to the
time involved in finding the cutoff wavenumbers of the first 10%

. . oisson’s equation, the main feature of this method is the use of a
modes in each case on a Sun SPARC 10 workstation was 18 s. frequency-independent Green’s function, which considerably reduces

the computational time and complexity involved in the evaluation

of matrix elements while solving the Helmholtz equation over a
A single ridge waveguide is a popular means of getting higheange of different frequencies. The numerical results obtained using

bandwidth. The first fouTM. andTE. mode cutoff wavenumbers the present method compare well with actual results (in the case

IV. CONCLUSION

C. Single-Ridge Waveguide
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of rectangular waveguides) and published results (in the case of[LLe]
shaped and single-ridge waveguides). As the next step, the application
of the same kind of formulation for solving the general Helmholtﬁ ]
equation in partially filled (inhomogeneous) waveguide structures is
presently being studied.
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