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Abstract—The new boundary-integral method used in this paper
illustrates a novel approach to solve the general Helmholtz equation
in homogeneously filled waveguides. Based on the method-of-moments
Laplacian solution, the main feature of this formulation is that the
Helmholtz equation is “reduced” to the Poisson’s equation, which is then
solved by using a static Green’s function. In other words, the Green’s
function used in this method is frequency independent, unlike the most
conventionally used Hankel functions. Hence, the computational time,
while analyzing the waveguide over a range of different frequencies, is
reduced considerably compared to other well-known numerical methods,
since the frequency term just appears as a scaling factor in the evaluation
of matrix elements. The numerical results obtained using the present
method compare well with actual results (in the case of rectangular
waveguides) and published results (in the case of L-shaped and single-
ridge waveguides).

Index Terms—Helmholtz equation, Green’s function, waveguide.

I. INTRODUCTION

The two-dimensional (2-D) Helmholtz equation appears in a variety
of physical phenomena and engineering applications, such as heat
conduction, acoustic radiation, and water wave propagation. In elec-
tromagnetics, the Helmholtz equation often appears as the governing
equation for waveguide problems. Diverse numerical methods like
the Ritz–Galerkin method, the surface integral-equation method, and
the finite-element method have been employed to solve this equation.

In the Ritz–Galerkin method, which has been used in [4], [6]–[9],
an integral equation for the transverse electric field at the inner
apertures of the waveguides is established. The surface integral-
equation approach, which has been used in [5], [12], and [17],
starts from surface integral equations for the current–density in the
waveguide walls for both TM and TE modes. The application of the
method of moments to the solution of these integral equations in both
methods leads to obtaining homogeneous systems of linear equations.
The matrix coefficients of these systems of equations are given by
infinite summation in the case of Ritz–Galerkin method and by
integrals containing Hankel’s functions, which must be numerically
computed in case of surface integral-equation method. In both cases,
the cutoff wavenumbers of the waveguides are obtained by solving
iteratively nonlinear equations which arise when the determinant of
the matrices of the systems of linear equations is set to zero (nontrivial
solution condition). This consumes large central processing unit
(CPU) time.
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The finite-element method has been used in [3], [10], [11],
[13]–[15]. In this method, the cutoff wavenumbers of hollow
waveguides are usually obtained by using variational expressions
which relate the propagation constants and the operating frequencies
of the waveguides with the values of the electric and magnetic
fields inside these waveguides. One constraint of the finite-element
method is that most field components that are to be approximated
have to be continuous in the cross sections of the waveguides
since the variational expressions used in the computation of the
cutoff wavenumbers involve derivatives of the mentioned fields
components. Another constraint is that when the cross section of the
waveguide to be analyzed presents reentrant corners (this happens
with single- and double-ridged waveguides, L-shaped waveguides,
crossed rectangular waveguides, etc.), the basis functions for the field
components should take into account the singular behavior of these
components at the conductor corners. This can be partly performed
with simple basis functions (polynomials) by using a denser mesh of
elements around the corners [10] or by using special basis functions
such as functions possessing the exact singular behavior of the fields
[11] or functions that permit the normal field to be discontinuous
between adjoining elements [13]. However, although these latter basis
functions have proved to be adequate to account for field singularities,
they lead to matrices in the generalized eigenvalue problem whose
coefficients have to be computed by means of numerical integration,
thus increasing the CPU time requirements [11], [13]. It should also
be said that when the effect of field singularities in reentrant corners
is ignored when applying the finite-element method, very inaccurate
results may be obtained (see [11, Sec. VI] and see the results for
modified transverse (MT) equation in [15, Th. IV]).

In the new method [1] discussed in this paper, two integral equa-
tions for the axial components of the fields (electric and magnetic)
inside a hollow waveguide are obtained by treating the Helmholtz
equations for these axial components as Poisson’s equations and
by using a frequency-independent Green’s function. The integral
equations are solved based on the method-of-moments Laplacian
solution, and it is proven in this paper that thanks to the use of a
static Green’s function, the computation of the cutoff wavenumbers
for the modes propagating in the waveguide reduces to obtaining
the eigenvalues of a matrix. The coefficients of the aforementioned
matrix can be obtained in closed form when pulse basis functions
and point matching are used to solve the integral equation.

In comparison with the Ritz–Galerkin method and the surface
integral-equation method, the cutoff wavenumbers of the first modes
are all obtained in one shot using this method by solving a relatively
simple eigenvalue problem, whereas in any of the other two methods,
the evaluation of each cutoff wavenumber requires one to iteratively
obtain the roots of a nonlinear function which has to be obtained
as the determinant of a matrix whose coefficients are not available
in closed form. It is clear that the latter procedure takes much
longer than the former. Moreover, the Green’s function used in
this method has only spatial dependence and is entirely frequency
independent. This also greatly enhances the performance of the
method in terms of computational time involved when the values
of the propagation constants of different modes are to be obtained
over different frequencies. The matrix elements are computed in far
lesser time since the frequency dependence appears as only a scaling
factor at each frequency.

By comparison with the finite-element method, the new method
also presents a clear advantage. Since the unknown functions in
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the new method (axial components of the fields) are solutions of
integral equations, the continuity of these functions in the cross
section of the waveguides and the ability to handle field singularities
at reentrant corners are not necessary conditions to be imposed on
the basis functions employed in the approximation of the unknown
functions. This is so because the integral of functions containing
discontinuities and singularities (of the type shown by the fields at
reentrant conductor corners) does not pose any problems. Therefore,
the basis functions employed in the new method can be chosen to
be simpler (e.g., pulse functions) than those employed in the finite-
element method. An immediate consequence of this is that for a given
accuracy, the size of the matrices involved in the application of the
new method should be smaller than the size of the matrices involved
in the application of the finite-element method. As a counterpart, the
matrices related to the application of the finite-element method are
sparse and those related to the application of the new method are
not. The reliability of the new method in comparison with the finite-
element method, and also the finite-difference time-domain method,
has been discussed in [1] and [20].

The accuracy of the results obtained by this method is compared
to actual results (for rectangular waveguides) and published results
(for L-shaped and single-ridge waveguides), in this paper.

II. SOLUTION OF THE GENERAL HELMHOLTZ

EQUATION IN HOMOGENEOUSLYFILLED WAVEGUIDES

In waveguides, solution of the Helmholtz equation determines the
electromagnetic field configuration within the guides. It is convenient
to divide the possible field configurations within the waveguides
into two sets, namely TM waves and TE waves, each of which are
governed by similar Helmholtz equations.

If we consider a waveguide in which the direction of propagation
of the wave is along thez-direction, then the Helmholtz equations
are as follows.
TMz Case(Hz � 0):

r
2
Ez(x; y) + (!

2
���K

2

z
)Ez(x; y) = 0 (1)

with appropriate boundary conditions

Ez = 0; on the conductor walls:

TEz Case(Ez � 0):

r
2
Hz(x; y) + (!

2
���K

2

z
)Hz(x; y) = 0 (2)

with appropriate boundary conditions

@Hz=@n = 0; on the conductor walls

where@Hz=@n represents the normal derivative.
Here,

Ez z-component of the electric field;
Hz z-component of the magnetic field;
! angular frequency= 2�f ;

where

f frequency of interest;
� permeability of the homogeneous medium;
� permittivity of the homogeneous medium;
K propagation constant in thez-direction.

A solution to the general Helmholtz equation for a smooth function
	 defined in a 2-D regionR, with contourC is

r
2
	(x; y) + �(x; y)	(x; y) = F (x; y) (3)

where� and F are known functions on the domainR, discussed
in [1].

On the contourC, the boundary condition can be of Dirichlet,
Neumann, or mixed type, as given by the general form

�	+ �
@	

@n
= 
 (4)

where �, �, and 
 are known spatial functions. Further,@	=@n
represents the normal derivative.

It is shown by Rejebet al. [1], that the Helmholtz equation could
be reduced to Poisson’s equation

r
2
	(x; y) = �G(x; y) (5)

with

G(x; y) = �(x; y)	(x; y)� F (x; y): (6)

The solution is then expressed as

	 = �h + �p (7)

where �h is the solution to the homogeneous Poisson’s equation
(Laplace’s equation)

r
2
�h = 0 (8)

and �p is the particular integral

r
2
�p = �G(x; y): (9)

The potential�h can be assumed to be produced by some equiv-
alent charges� located on the contourC, and can be obtained using
the following integral, as explained in [2]:

�h(x; y) =
1

2�
C

�(x
0

; y
0

) � ln
k

(x� x0)2 + (y � y0)2
dl
0

(10)

where l0 is the arc length on the contourC.
The particular solution of the Poisson’s equation is given by

�p(x; y)

=
1

2�
R

G(x
0

; y
0

) � ln
k

(z � x0)2 + (y � y0)2
dx

0

dy
0

:

(11)

In (10) and (11),(x; y) and(x0; y0) denote the spatial coordinates
of the field and source points, respectively, andk is an arbitrary
constant which provides the potential at the reference point, and is
taken to be 100 in our calculations.

Using the method of moments, involving pulse–expansion basis
functions and point-matching techniques at the midpoints of theN

discretized subregions ofR, andM subcontours ofC, the solution
can be obtained from a system of matrix equations [1], given by

[A] � [	i] = [B] (12)

where

[A] = ([pji][lji]
�1
[bji]� [qji])[�i] + [I] (13)

[B] = [pji][lji]
�1
[
j ] + ([pji][lji]

�1
[bji] � [qji])[Fi] (14)

and[I] denotes theN�N identity matrix. Here	i; Fi, and�i refer
to the values of	; F and �, respectively, at the midpoints of the
discretized subregions. The computation of matrices[pji]; [qji]; [lji],
and [bji] have been discussed in [1]. An important inference in
the computation of these matrices is that they do not involve the
frequency term and, hence, the matrix elements remain unchanged
even while solving the Helmholtz equation over different frequencies.
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TABLE I

Comparing (1) and (2) with (3), and also the boundary conditions
of theTMz andTEz cases with that of the general equation, we can
draw the following analogies from Table I.

Examining (14)

[B] = [pji][lji]
�1

[
j ] + ([pji][lji]
�1

[bji]� [qji])[Fi]:

It can be inferred that[B] = 0, sinceF = 0 and 
 = 0 for TMz

and TEz cases.
In the case ofTMz, (12) reduces to the form

[A] � [Ezi] = 0: (15)

In the case ofTEz , (12) reduces to the form

[A] � [Hzi] = 0: (16)

Here again,Ezi and Hzi refer to the values ofEz and Hz at
the midpoints of the subregions of the discretized waveguide cross
section.

For (15) and (16), nontrivial solutions exist for[Ezi] and [Hzi]

only if the matrix [A] is singular. The condition for nontrivial (i.e.,
nonzero) solutions to exist for[Ezi] and [Hzi] is

det [A] = 0 (17)

wheredet [A] stands fordeterminant of[A]. We know from (13) that

[A] = ([pji][lji]
�1

[bji] � [qji])[�i] + [I]

and we also know that forTMz andTEz cases

� = !
2
���K

2
z : (18)

Hence, given the frequency at which the Helmholtz equation is to
be solved,det [A] would be a function ofKz , the roots of which
give the values ofKz for which det [A] = 0. Once theseKz values
are known, the eigenvector of[A] corresponding to the minimum
eigenvalue gives the nontrivial solutions for[Ezi] and [Hzi] in case
of TMz andTEz cases, respectively.

Once [Ezi] and [Hzi] are determined at the grid points, using
Gaussian elimination for instance, the values ofEz andHz at any
other point can be obtained using ordinary matrix multiplications, as
explained in [1].

As mentioned earlier, the main feature of this formulation is the use
of a frequency-independent Green’s function, which in this case is

1

2�
� ln

k

(x � x0)2 + (y � y0)2
:

Thus, while analyzing the waveguide over different frequencies,
computation of matrix elements using this method is relatively less
complicated and involves lesser computational time compared to
other methods which make use of frequency-dependent Green’s
functions, e.g., Hankel functions. The frequency term just appears
as a scaling factor in all the matrix computations involved in this
method.

Fig. 1. Rectangular waveguide.

A. Calculation of Propagation Constants of Different Modes

It is evident that for the existence of nontrivial (nonzero) solutions
for [Ezi] and [Hzi], it is necessary that (17) be satisfied.

Let us define a matrix[Z]

[Z] = ([pji][lji]
�1

[bji] � [qji]): (19)

Hence, (17) becomes

det ([Z][�i] + [I]) = 0 (20)

which can be rewritten as

det [Z] �
�1

�i
[I] = 0: (21)

Equation (21) is similar to thecharacteristic equationof matrix
[Z], with its eigenvalues given by�1=�i. Knowing that�i above
� !2���K2

z for TMz andTEz cases, it can be concluded that

�1

�i
=

1

(Ki
z)

2
� !2��

= EV
[Z]

i ; i = 1; 2; � � � ; N: (22)

whereKi
z is the propagation constant of theith mode andEV [Z]

i �

ith eigenvalue of[Z].
Equation (22) can be rearranged as

(K
i
z)

2
= !

2
��+

1

EV
[Z]

i

: (23)

Therefore, the propagation constants of different modes in the
waveguide are given by the following:

For (Ki
z)

2
> 0;

K
i
z = !2��+

1

EV
[Z]

i

propagating modes (24)

For(Ki
z)

2
< 0;

K
i
z =j �!2���

1

EV
[Z]

i

nonpropagating modes:

(25)
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TABLE II
CUTOFF WAVENUMBERS FORAIR-FILLED RECTANGULAR WAVEGUIDE

Fig. 2. Propagation characteristics in rectangular waveguide 4� 3 cm.

Results of propagation constants of various modes in a rectangular
waveguide computed by this method are shown in Section III, and
compare well with actual results.

B. Calculation of Cutoff Frequencies for Different Modes

The cutoff frequencies for the various propagating modes in the
waveguide are given by

f
i

c =
v

2�
(!2�� � (Ki

z)
2) (26)

wheref ic � cutoff frequency of theith mode.
Here,v � velocity of light in the homogeneous medium� 1=

p
��.

It can be deduced from (23) that

!
2
��� (K

i

z)
2
=

�1
EV

[Z]

i

; i = 1; 2; � � � ; N:

Using the above relation in (26), we find the cutoff frequencies for
the firstN propagating modes

f
i

c =
v

2�

�1
EV

[Z]

i

; i = 1; 2; � � � ; N: (27)

The cutoff wave numberkic of the ith mode can be calculated from
the cutoff frequency using the relation

k
i

c =
2�f ic
v

; i = 1; 2; � � � ; N:

This method thereby provides a straightforward approach to find
the cutoff frequencies (and, hence, cutoff wavenumbers) of any
waveguide structure without resorting to scanning over a wide range
of frequencies, as is done in the Ritz–Galerkin and surface integral-
equation methods. Results for the cutoff wavenumbers of rectangular,
L-shaped, and single-ridge waveguides are given in Section III.

III. RESULTS

A. Rectangular Waveguide

A simple case of a waveguide is the rectangular waveguide. For
the waveguide in Fig. 1, the region was divided into 100 subregions
and the boundary was discretized into 96 subcontours. The maximum
matrix size involved in computations was 100� 100. Results have
been displayed in Table II for the cutoff wave numbers of the first
eightTMz=TEz modes. The computational time involved in finding
the cutoff wavenumbers of the first 100 modes on a Sun SPARC 10
workstation was 16 s.

Fig. 2 gives the values of propagation constants of the first four
propagating modes in the rectangular waveguide shown in Fig. 1.
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TABLE III
CUTOFF WAVENUMBERS FORAIR-FILLED L-SHAPED WAVEGUIDE

TABLE IV
CUTOFF WAVENUMBERS FORAIR-FILLED SINGLE-RIDGE WAVEGUIDE

Fig. 3. L-shaped waveguide.

B. L-Shaped Waveguide

The first four TMz and TEz mode cutoff wavenumbers were
computed for the L-shaped hollow waveguide shown in Fig. 3. Since
analytical results are not available for this waveguide, the obtained
results in Table III were compared with published data. For the
waveguide above, the region was divided into 108 subregions and the
boundary was discretized into 96 subcontours. The maximum matrix
size involved in computations was 108� 108. The computational
time involved in finding the cutoff wavenumbers of the first 108
modes in each case on a Sun SPARC 10 workstation was 18 s.

C. Single-Ridge Waveguide

A single ridge waveguide is a popular means of getting higher
bandwidth. The first fourTMz andTEz mode cutoff wavenumbers

Fig. 4. Single-ridge waveguide.

were computed for the single-ridge hollow waveguide shown in
Fig. 4. Results have been displayed in Table IV and compared with
published data. For the waveguide, the region was divided into 96
subregions and the boundary was discretized into 112 subcontours.
The maximum matrix size involved in computations was 96� 96.
The computational time involved in finding the cutoff wavenumbers
of the first 96 modes in each case on a Sun SPARC 10 workstation
was 18 s.

IV. CONCLUSION

The method discussed in this paper presents a very efficient
technique based on the method-of-moments Laplacian solution to
solve the general Helmholtz equation in homogeneously filled waveg-
uides. In addition to “reducing” the Helmholtz equation to the
Poisson’s equation, the main feature of this method is the use of a
frequency-independent Green’s function, which considerably reduces
the computational time and complexity involved in the evaluation
of matrix elements while solving the Helmholtz equation over a
range of different frequencies. The numerical results obtained using
the present method compare well with actual results (in the case
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of rectangular waveguides) and published results (in the case of L-
shaped and single-ridge waveguides). As the next step, the application
of the same kind of formulation for solving the general Helmholtz
equation in partially filled (inhomogeneous) waveguide structures is
presently being studied.
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